Extensions 1→N→G→Q→1 with N=C5 and Q=M4(2).8C22

Direct product G=N×Q with N=C5 and Q=M4(2).8C22
dρLabelID
C5×M4(2).8C22804C5xM4(2).8C2^2320,914

Semidirect products G=N:Q with N=C5 and Q=M4(2).8C22
extensionφ:Q→Aut NdρLabelID
C51(M4(2).8C22) = (C4×D5).D4φ: M4(2).8C22/C22×C4C4 ⊆ Aut C5804C5:1(M4(2).8C2^2)320,1099
C52(M4(2).8C22) = (C2×D4).9F5φ: M4(2).8C22/C2×D4C4 ⊆ Aut C5808-C5:2(M4(2).8C2^2)320,1115
C53(M4(2).8C22) = M4(2).19D10φ: M4(2).8C22/C4.D4C2 ⊆ Aut C5808-C5:3(M4(2).8C2^2)320,372
C54(M4(2).8C22) = M4(2).21D10φ: M4(2).8C22/C4.10D4C2 ⊆ Aut C5808+C5:4(M4(2).8C2^2)320,378
C55(M4(2).8C22) = M4(2).31D10φ: M4(2).8C22/C2×M4(2)C2 ⊆ Aut C5804C5:5(M4(2).8C2^2)320,759
C56(M4(2).8C22) = (D4×C10).29C4φ: M4(2).8C22/C2×C4○D4C2 ⊆ Aut C5804C5:6(M4(2).8C2^2)320,864


׿
×
𝔽